DANIEL BARTEL
  • Person
    • Über mich
    • Projekte
    • Referenzen
    • Kontakt
  • Medien
    • Podcasts & Videos
    • Bücher
    • Blog
    • Medium
    • Vorträge
  • Social Intrapreneurship
    • Transformative Startups
    • Lean Impact
    • 5 Phasen-Modell
    • Design Thinking
    • Business Model Generation
    • Ideenschmiede
  • Entrepreneurship Education
    • Was ist ein Startup?
    • Zebras vs. Unicorns
    • Gemeinwohl-Innovation
    • Customer Development
    • Sharing Economy
    • Lean Startup
    • Value Proposition Design
  • EN

Laute Gedanken
zur digitalen Transformation

Thesen über Stress und dessen Ursachen

1/11/2017

 
Ich bin begeisterter Deutschlandfunk Nova-Hörer und dafür zahle deshalb wieder gerne GEZ-Gebühren. In einer Hörsaal-Sendung ging es mit dem Philosoph Robert Pfaller um das Thema Stress. Das Thema Stress war für mich zuvor immer nicht greifbar, doch Herr Pfaller hat in seiner Vorlesung viele Thesen über dessen Ursachen aufgestellt, von denen ich hier einige auflisten möchte:

Eustress ist kein Stress

Wir unterscheiden ja gerne zwischen Eustress (den Stress, der Euphorie auslöst, ähnlich dem Flow) und dem negativen Disstess (den negativen, belastenden Stress). Herr Pfaller plädiert dafür, das Wort Stress ausschließlich dem negativen Disstress zuzuschreiben.

Viel Stress gibt es erst seit 20 Jahren

Stressige Zeiten oder Situationen gab es bereits seit Menschheitsgeschichte. Vermutlich kennen Tiere in Extremsituation auch Stress. Aber aufgrund der Globalisierung und Industrialisierung sowie Vernetzung in den letzten 20 Jahren gibt es viel mehr Auslöser von Stress. daher ist das Thema so präsent in unserem Alltag. 

schlechter arbeiten müssen als gefordert 

Ein Grund für Stress ist die Forderung, dass wir schlechter arbeiten müssen als es gefordert ist. Wir wissen alles, was, wie erledigt werden muss, aber oftmals werden wir in unserer Arbeit unterbrochen oder können diese nicht mehr richtig bis zu Ende ausführen. Beispielsweise sorgt Bürokratie vom Ablenken vom Wesentlichen, statt zu arbeiten, werden wir beschäftigt. Durch die Vermessung der Arbeit durch Reporting und Statistiken, versuchen wir nicht mehr die notwendige Arbeit zu erledigen, sondern den Statistiken und Messungen zu dienen.

Zu wenig Unterschied zwischen Arbeit und Nicht-Arbeit

Die Beschäftigung hält Viele vom Arbeiten ab. Als Beispiel hat Herr Pfaller das Management an Hochschulen aufgeführt: Durch den Privatisierungsdruck sind es nun Manager, die Professoren diktieren, was sie tun sollen oder lassen sollen. Die Manager sind meist unbefristet eingestellt, Professoren haben eine befristete Lehrtätigkeit. Statt dem Professor zu vertrauen und arbeiten bzw. lehren zu lassen (Arbeit), entscheiden Manager über die Tätigkeit (Nicht-Arbeit). Das Phänomen ist auch im Kulturkapitalismus zu beobachten. 

Sinnvolles Arbeiten ist gefähRdet

In einer zitierten Studie waren 72% der Studenten mehr daran interessiert, was in einer Prüfung abgefragt wird als den eigentlichen Inhalt zu erfahren. Der Wahn nach ECTS-Punkten sammeln und Pseudo-Effizienzen hält von der sinnvollen Arbeit ab. Der Sinn der eigentlichen Tätigkeit wird immer unwichtiger. Das sorgt für inneren Stress. Zum Beispiel wenn ein Konstrukteur geplante Obsoleszenz in Produkten einbauen muss.

Leistung und Erfolg sind Entkoppelt

Wenn ein Fließbandmitarbeiter jeden Tag hunderte Autos zusammenschraubt, aber sich keines dieser leisten kann, dann ist der Erfolg von der Leistung entkoppelt. Das Ergebnis ist nicht unmittelbar sichtbar. Das hat auch die Teilung der Arbeit in viele hunderte kleinen Schritten (Talyorismus) verursacht.  

Fehlende Anerkennung trotz Steigerung

Ein weiterer Grund für Stress ist die fehlende Anerkennung trotz Steigerung bzw. Verbesserung in den Fähigkeiten. So bekommt eine Frau mit Kind und 20 Jahren Berufserfahrung den gleichen Hartz 4-Satz wie eine 18-jährige Berufsanfängerin.  

Mangelnde Souveränität

Die Möglichkeit, über sich selbst zu bestimmen, wird in vielen Situationen verhindert und über die Schullaufbahn systematisch abtrainiert. 

Unsicherheit der Arbeit

Durch die Restrukturierung unserer Wirtschaft wird die Sicherheit des Arbeitsplatzes immer mehr in Frage gestellt. Die Angst, einen sicheren Arbeitsplatz zu bekommen, wächst. 

Wir machen uns Glücksstress

"Alle rennen nach dem Glück, das Glück rennt hinterher" war eine Aussage von Herrn Pfaller, der den Hörsaal zum Lachen brachte. Tatsächlich muss das Glück uns dienen und nicht anders herum.

Fehlende Rituale & Geselligkeit 

Der Übergang von der einen in die andere Lebensphase war früher mit wesentlich mehr Ritualen verbunden. Auch im Kleinen brauchen wir diese Ritualen zwischen verschiedenen Tätigkeiten. So kommt auch das Gespräch an der Kaffeemaschine zwischen zwei Terminen einen Ritual nahe, der die darauflegende Tätigkeit maßgeblich einfacher werden lässt. Die Geselligkeit, bzw. unter einer Gesellschaft zu sein, die auch mal Pause macht oder "nichts-tut" und rumalbert - das braucht der Mensch laut dem Philosophen Pfaller. 

GAFA: Google, Apple, Facebook and Amazon lead the way with a new network Economy

17/10/2017

Kommentare

 
Known as GAFAnomics, these global powerhouses present much we can learn
Google, Apple, Facebook and Amazon - they are industry leaders, market shakers and truly global brands that have reimagined and completely revolutionised their markets. So substantial have these changes been, and the effects that they have had upon their consumers, that they have laid fresh ground for a new economy. Known as the network economy here we take a look at just what GAFAnomics can teach the rest of the business world.
 
GAFA - Four companies that need no introduction
Google has a seemingly unshakable grasp not only on the online realm of search engines, but have expanded into everything from business apps to superior satellite navigation. Apple have long since been recognised as consistent market disrupters, innovators and standard setters. Facebook has revolutionised the very ways in which we live, interact and conduct our social lives and Amazon have redefined the realm of online shopping with consumer driven, supply and demand pricing and a logistics setup of which Santa himself would be proud.
Between them they have 7 billion customers worldwide (FaberNovel 2014) and this seems to be just the beginning of a monopolised world for GAFA.
 
The Network Economy – What is it?
The Network Economy is the way in which GAFA see the world of business. It is a market without borders; it is re-defined by a customer culture where consumers themselves define the products and services. GAFA imagine this newly mapped out business landscape to be a network, with a pool of consumer connections to be controlled.
 
The Network Economy can be defined by four core concepts that help harness and nurture the interactions between their company and the now border free market in which they operate:

1. Magnetic: The company capitalises and monetises micro points of value;
2. Intimate: The company understands its target market and engages them in such a way so as to feel like an old trusted friend, rather than a company;
3. Real-time: The company evolves its commercial offering in real time, reacting to the market immediately and adapting its products or services in an instant;
4. Infinite: The company grows at substantial rates through winning customers at the most minimum of costs.
Bild
Four of the world’s most powerful companies. Defined by five core notions
Whilst differing drastically in the consumers that they serve and the products or services that they serve up Google, Apple, Facebook and Amazon go beyond a technology driven edge. They have the same five universal principals that define the ways in which they approach their markets. And it makes for a real shake up of the traditional ways in which most businesses, even successful ones, operate.
 
1. Customer – GAFA see each and every person as a customer – even those who are yet to purchase. They treat all as equals, providing superstar customer service and experiences whether someone has purchased or not.
GAFA focus not on winning the transaction of the customer, but rather their attention.
 
2. Addressable market – GAFA have made waves within the world of addressable markets, most pivotally asking if there is even the need for set markets in today’s ever more globalised world. They simple see any connected person as a potential consumer, and conversely see any non-connected person as someone who needs to become connected. Perhaps best epitomising this notion is Mark Zuckerberg’s project to beam the internet to remote regions of Africa.
GAFA aim to have a complete monopoly upon their customers’ attention.

3. Value creation – Ever since the very first business ‘value’ has been defined by revenue minus costs. Profit is a seemingly age old concept, and another that GAFA have reimagined, instead focusing upon a core key performance indicator of saving their customers’ time and effort.
GAFA ultimately aim to deliver consistent, sustainable customer value over and above short term profit
 
4. Core business – GAFA aren’t in the business of manufacturing. They are in the business of solving customer problems. This shift in focus has been key to leading GAFA to industry shaking moves, such as Google’s expansion to finance (e.g. Google Wallet), automotive (e.g. Google Car) and retail (e.g. Google Express).
 
GAFA don’t focus upon their business type, they are defined by customer needs –wherever this may take them
 
5. Management – For GAFA the days of endless management levels are over. They opt for small teams that take ownership of projects and they harness insightful data for superfast and intuitive decision making.
GAFA cut out bloated, ineffective management levels by being innovative and harnessing all that open source computing can deliver
 
So, how does this approach stack up in the eyes of the consumer?
The rules books have been well and truly torn up and it seems that going against the grain has literally paid serious dividends for the four companies that make up GAFA.
Google and Apple are actually considered to be the most valuable brands in the world (FaberNovel 2015) and as of 2013 GAFA had cash reserves of $123 billion, which could purchase 4 Big Mac Burgers for each and every person in the world (FaberNovel 2014).
Of course beyond financial figures are what these companies would say that they’re arguably more interested in: consumer satisfaction. And it seems that this focus, as well as each of the other concepts that make up GAFAnomics, could well be of benefit to each and every business within the world today.

Kommentare

Make Algorithms more human in the age of Dataism

2/10/2017

Kommentare

 
Surely humans do not act as machines - for they are no machines. This applies for daily human behavior as well as human working environments. Human behavior is not always fully linear, not completely predictable at every stage of the working process and sometimes apparently inefficient. Real people make exceptions where machines strictly follow the rule. In former times you would have regarded these facts as a sign of human intelligence. These obvious platitudes can become quite doubtful when human workers are more and more controlled by electronic devices and software programs. So the still imperfect but at the core human modern working environment more and more collides with the demand for perfectly efficient working processes. These completely controlled processes are regarded as a guarantor for economic success at a progressive rate. With regard to algorithms controlling more and more working environments some questions should be allowed about the ethical implications of this development. A notorious example is Amazon and its sophisticated computer system supervising and leading all factors in the delivery process including the human work force. Is it right when machines set the metrics of human work? Does this development truly guarantee more economic success than original human work and motivation? The working environment is not the only example of machines grasping for control - just have a look on automatized processes taking over control in your car. We the robot in your car make better decisions and will traffic become more predictable and safer? We doubt this. 

What we do here is to strike a blow for more humanity among algorithms.

Efficiency versus humanity?

The Amazon system where workers are controlled and directed by a supervising computer system is by far not the only example of algorithms in control. But the Amazon process is very significant when it comes to open up the implications of such an approach especially in a working environment. One clear finding is that it is "ruthless approach" (1) to treat humans like robots by discarding obvious ineffective workers without hesitation. It leaves a work force which is not led by inner motivation but by a "machine god". Employers who rely on such methods will not be able to build up a stable work force which clings to the firm for a long time. The costs of replacing workers very often and to break the newcomers in have to be put on the bill too. Also treating workers as "ants" will only be successful as long enough free workers play in the market. If businesses get into an economic situation where there is more work than people a more human treatment of the work force will be the key to keep the workforce. For some countries in Europe this situation is not as farfetched as it sounds because of the gap in their demographic development. So we regard a machine ruled workers treatment as economically shortsighted and ethically questionable.

Efficiency Gaps in Machine Routines

Also it can be doubted that machine controlled processes always persuade with more efficiency. Amazon offers just another example of machine routines in connection with human tasks which leave some doubts about such processes. We talk about the Amazon Mechanical Turk which offers a marketplace for work. A study of Panagiotis G. Ipeirotis and others, Leonard Stern School of Business (2), finds some remarkable flaws in the machine control especially when it comes to assess the individual worker's performance. At this point the efficiency routine becomes a disadvantage as the typical machine routine is unable to have a closer look on the individual case. The authors of the study offer a new code to solve some of the problems but it shines through that just changing some algorithms is not the solution to the core problem: Machines make no exceptions and can just perform the way their programs run. 

Chances of Human-Computer Interaction

No doubt, when machines serve humans the human-computer interaction offers a lot of chances as well. As a study of José J. Cañas and others points out, ergonomics in the working environment are supported by intelligent machine solutions when the machine remains the servant and the human is the leader. These means that an intelligent interaction between machines and humans still somehow leaves the human in the driver's seat. Especially Software as a Service (SaaS) solutions which come from outside into the enterprise should be designed to this basic principle. These software solutions from outside becoming the ruler over human people is always at risk not to support the typical chemistry which makes a business successful because as a machine it lacks human intuition.

Why Human Intelligence is different

Other ethical dilemmas concern intelligent machines which have to make human decisions. It is understood that an intelligent car replacing the human driver will have to be programmed to kill. (4) Even cool algorithms get into moral difficulties when they face a not avoidable accident. What if the machine can just choose between two possibilities: Just kill two people or 20 people, no other solution given? In a minor form this is the often awful decision a human driver has to make in a second when forced between killing a dog running in his car or risking the life of the driver behind by stopping abruptly? Yes, algorithms have to be very sophisticated to get into such sensitive and complex decision-making spheres. Scientists and engineers work on such solutions which make clear that the human element is not dispensable. It is a part of intelligence because intelligence is not just algorithm.

Having this in mind there is no limit to a very successful human-machine-interaction which makes human life more comfortable, safer and sometimes even more human. Humanity remains the metrics of machine ruling and the Software ideally even understands human behavior. At least a bit. 



References:

(1) http://edgardaily.com/en/life/2015/inside-amazon-how-computers-rule-over-human-employees-28131
(2) http://www.ipeirotis.com/publications - A Framework of Quality Assurance in Crowdsourcing
(3) Human Factors and Ergonomics, José J. Cañas1, Boris B. Velichkovsky2 and Boris M. Velichkovsky 3, University of Granada, Spain, Kurchatov Research Institute, Moscow, Russian Federation, Dresden University of Technology, Germany
(4) http://www.technologyreview.com/view/542626/why-self-driving-cars-must-be-programmed-to-kill/
Kommentare
<<Zurück
Nach vorne>>

    Autor

    Daniel Bartel​
    ​

    KATEGORIEN

    Alle
    Corporate Startup
    Customer Development
    Design Thinking
    Lean Startup
    Sharing Economy
    Value Proposition Design

    RSS-Feed

    Tweets von @danbar87
KONTAKT 
  IMPRESSUM & DATENSCHUTZ